Backy

Mighty Morphing Mesh Machine

Now, think about the fun you could
have morphing between a 3D model of
your brother and the monkey — that
could make your week. Most 3D ani-
mation packages will allow you to do
this, but what you might really be
looking for is a real-time 3D demo fea-
turing your brother in some sort of
failed lab experiment that you could
mercilessly blow away. Or something
like that...

To engage in this advanced level of
fun, you need a method for morphing
between two 3D shapes. This tech-
nique is not only amusing, but also
quite useful. 3D morphing can help
create organic animation that would
otherwise be difficult to develop.

Morphingand
Real-Time 3D Animation

Another use for 3D morphing is
smoothing between keyframes.
In games such as QUAKE 2, you may
read that the animation in-betweens
are interpolated. I have discussed
before how in QUAKE (and many 3D
action games) each frame of anima-
tion is actually represented by an indi-
vidual mesh. By sequencing through
those meshes, the illusion of anima-
tion is created. However, the original
object frames are created at a set frame
rate, say 10 frames per second (FPS).
This means that the smoothest those
animations can play back is at that
original 10 FPS. If, for example, the
engine is actually displaying at 60 FPS,
each frame of character animation is
held for six frames. That’s quite a
wasted opportunity. Smoother anima-
tion could be achieved by morphing
from one frame to the next over those
six frames. That is exactly what the
“feature hypers” (you know, the fea-

http://www.gdmag.com

ture-happy marketing dudes) are talk-
ing about when they talk about inter-
polated in-betweens. But what exactly
is being interpolated?

LERP - Morph

his is an important equation in the

game programmet’s arsenal. Many
programmers who have been working
in 3D for some time take this for grant-
ed as widely known information. But
judging by the mail I get and the com-
ments I see in the public forums, there
are many individuals who aren’t up-to-
speed on how morphing works. The
secret to object morphing is that the
only thing that changes between the
two models is the vertex positions in
the object (a little white lie — I'll get to
the truth later). When you morph
between 3D objects, you are doing a
“linear interpolation,” or LERP,

FIGURE 1A. Your model at rest, for
the first frame of animation.

ost game people have played around with those programs that will
morph between two graphic images. They allow you to take a picture
of your brother and a picture of a freckle-faced baboon, play with the

sliders, and enjoy hours of endless amusement.

between the vertex positions in the
two objects. For this technique to
work, the two models you are morph-
ing between must have identical vertex
counts, and the vertices must corre-
spond to each other. This means that
vertex 1 on the first model should end
up in the position of vertex 1 in the
second model. The easiest way to make
sure that the models are created cor-
rectly is to actually create the second
model by moving the vertices in the
first model into the shape you want.
That way, the models will interpolate
exactly the way you created them. By
now you have the models and want to
morph between them. The formula for
a LERP between two values is

InBetween = Valuel + ((Value2 - Valuel) *
lerpValue);
Where lerpValue is a float between 0 and 1.

Now, this formula needs to be applied

FIGURE 1B. The same model, frame
two. You’ll get smoother animation
by morphing between frames.

Morphing between a lounging postion on the beach and a slave position at his desk,
Jeff can be found at Darwin 3D working on real-time game technology. Email him at
jeffl@darwin3d.com with suggestions for the next keyframe.

DECEMBER 1998

GAME DEVELOPER

PHA and D3DTOP_BLENDDIFFUSEALPHA in
DirectX 6 (See “Multitexturing in
DirectX 6,” Game Developer, September
1998). With multitexture hardware

to every parameter that will vary during
the morph. For a 3D vertex coordinate,
those parameters would be the x,y, and
z values for that point. This is where I

possible. Multitexture hardware can
provide a hardware-accelerated method
for blending between two textures via
methods such as the D3DTOP_BLENDFACTORAL-

explain the truth behind that little
white lie. There may be more parame-
ters than just the coordinates which you
wish to interpolate for an individual
vertex. If your game engine supports
real-time lighting and your model data
contains vertex-normal information, for
example, you may want to interpolate
the normal values as well. Also, if your
model contains vertex color informa-
tion, an interesting effect may be creat-
ed by interpolating the color.

What about textures? If your 3D
model contains texture coordinates,
you may want those coordinates to

LISTING 1. The morph code.

#define LERP(a,b,c) (a + ((b - a) * c))
I T
// Procedure: morphModel
/] Purpose: Does the Morph for the Model
/] Arguments: Pointer to main bone
I T
GLvoid COGLView::morphModel(t_Bone *curBone)
{
/11 Local Variables ///1/1111IITTITNTTITINIENETLEN LT T
int loop,pointloop;
float *dest,*srcl,*src2,ratio;
I i i g i i g i i e i i

if (curBone->visualCnt > m_curVisual)

change over time as well. However, {
there are many possible pitfalls associ-

ated with morphing textures. Small

changes in UV coordinates can cause a

major shift in the appearance of a
// LOOP THROUGH THE VERTICES

H,IOdel, tha.t may not be de,SHEd' . for (loop = 0; loop < curBone->visuals[0].triCnt * 3; loop++)
Likewise, it may be more interesting to {

change the texture completely for the // GO THROUGH EACH ELENENT IN THE VERTER STRUCTURE
second position. This complicates for (pointloop = 0; pointloop < curBone->visuals[0].vSize; pointloop++)
things a bit. However, if the UV coordi- {

nates stay constant throughout the

morph and only the texture changes,

image processing techniques can help.

By using a 2D dissolve to create a blend-

ed image between both textures, this

will smoothly change along with the

model. These blended textures could }
either be prebuilt as a texture anima- // morphModel
tion or actually created on-the-fly, if

TABLE 1. A comparison of different formats.

// FRAME 1

// FRANE 2

// DESTINATION FOR MORPHED FRAME
// GET MORPH VALUE (0 - 1)

srcl = curBone->visuals[0].vertexData;
src2 = curBone->visuals[1].vertexData;
dest = curBone->visuals[2].vertexData;
ratio = m_Slider->GetSetting();

// THE NEW POSITION IS A LERP BETWEEN THE TWO POINTS
dest[(Loop * curBone->visuals[0].vSize) + pointloop] =
LERP(src1[(loop * curBone->visuals[0].vSize) + pointloop],
src2[(loop * curBone->visuals[0].vSize) + pointloop],ratio);
}
}
}

GAME DEVELOPER

DECEMBER 1998

Format Used Exported Imported Normals Poly Vertex UV Coords Animation Hierarchies Ascll Ease of Use
By By By Color Color (10 = Easy)
.3DS 3DS R4 1,2,8 1,2,8 X X X X X X 6 (w/ KTX lib)
.3DS Ascll 3DS R4 1 1 X X X X X X X 6
.DXF Autocad 1,2,3,4,6,7,8 1,3,5,6,7,8 X X X 7
LwoB Lightwave 5 5 X X X 5
.0BJ Wavefront 2,3,6,7,8 2,3,6,7,8 X X X X X 10
Game Exchange Nichimen 7 7 X X X X X X X 9
.HRC Softimage 8 8 X X X X X X 1
MAX 3DS MAX 2 2 X X X X X X o (Max only)
Maya ASCIl Maya 6 6 X X X X X X X 8
VRML VRML 2,7,8 2,7,8 X X X X X X X 6
X Direct X 2,7,8 2,7,8 X X X X X X 7
Program Names: 1 .3DSR4
2 .3DS MAX
3 Alias
4 Hash
5 Lightwave
6 Maya
7 Nichimen
8 Softimage

http://www.gdmag.com

becoming more common, this could
be an area to add value to your hard-
ware-accelerated application.

This algorithm is actually very easy
to get up and running. You can see the
code for a 3D morph in Listing 1. One
easy optimization to make would be to
precalculate the deltas between each
parameter to remove a subtraction
operation. In the case of an animation
system, predividing the deltas by the
number of desired in-betweens would
turn it into a pure addition operation.

That’s all there is to 3D morphing.
Given how easy a 3D morph actually is
to implement, I wonder why we don’t
see it more in real-time 3D games.
There are many uses for this technolo-
gy. Beyond creating in-betweens for
character animation, morphing is an
excellent way to change the shape of
characters. It can also be used to create
facial animation and other special
effects. Hopefully, we will start to see
more in the next generation of real-
time projects.

Getting Your Model Data

s 0, you're ready to start morphing
every object you can get in your

hands. That brings up an important
question. How do you get your hands
on model data? When it comes to game
companies with staff artists and tool
programmers, many rely on high-end
animation packages with SDKs. These
toolkits allow the programmers to write
plug-ins that allow them to get to the
data directly. This is not always possi-
ble. Some programmers do not have the
money, time, or experience to get mod-
els this way. The other option is to use
a public 3D file format. The ideal file

FIGURE 2A. Your “brother” mapped
onto a 3D model.

GAME DEVELOPER

format contains all the information
that the application requires and is easy
to use. The ideal format is also public,
meaning that information is publicly
available describing the format. Code
samples are even more desirable.

So, which file format is the best one
for you? Table 1 (see page 16) contains
a list of several file formats along with
some information about them. This is
by no means comprehensive, but the
list offers a glimpse of what's out there.
Ease-of-use is an opinion gathered from
my own experience and from dis-
cussing it with other programmers.

The key to finding a format to sup-
port in a custom tool is to pick a for-
mat that contains all the information
that is critical to your application. If
your game engine uses vertex coloring,
make sure the format supports that
feature. It’s also helpful to pick a for-
mat that is supported by your or your
artist’s favorite art tool. There are com-
mercial 3D file converters available,
but they add cost and an additional
step to the production process. Also,
using an ASCII format makes checking
your data and debugging the process
much easier.

I have found that one of the easiest
to use and most widely supported for-
mats is the Wavefront .OBJ format. It
contains support for UV coordinates as
well as for vertex normals. The format
is so easy that you really don’t even
need a spec to write a file loader. Listing
2 shows a simple cube in .OB] format.
Lines that begin with the pound sign #
are comments and can be ignored. The
initial o cubel defines the name of the
object. That is followed by the mtllib
cube.mtl. This line describes a file that
contains material information about
the object. But more on that later.

FIGURE 2B. The original figure mor-
phed into a baboon.

DECEMBER 1998

The next block of information actu-
ally describes the vertices. Each line
starts with a v and is followed by the x,
y, and z coordinate values. The com-
ment at the end actually tells you the
number of vertices. But, that doesn’t
seem to be a standard feature of this
format, so you shouldn’t count on it.

The vn block gives the x, y, z, values
for the normals in the model and the
vt block describes the texture coordi-
nates. The texture coordinates can be
either two coordinates (u and v) or
three (u, v, and w). For most real-time
applications, however, the v value
could be ignored. A 3D model may
have normals or texture coordinates,
or both, or neither, but it obviously

LISTING 2. An OBJ Cube.

o cubel
mtllib cube.mtl

-5.000000 -5.000000 -5.000000
-5.000000 -5.000000 5.000000
-5.000000 5.000000 -5.000000
-5.000000 5.000000 5.000000

v 5.000000 -5.000000 -5.000000
v 5.000000 -5.000000 5.000000

v 5.000000 5.000000 -5.000000

v 5.000000 5.000000 5.000000

8 vertices

= =« =

=

vn -1.000000 0.000000 0.000000
vn 0.000000 0.000000 1.000000

vn 1.000000 0.000000 0.000000

vn 0.000000 0.000000 -1.000000
vn 0.000000 -1.000000 0.000000
vn 0.000000 1.000000 0.000000

6 normals

vt 0.000000 0.000000
vt 0.000000 1.000000
vt 1.000000 0.000000
vt 1.000000 1.000000
4 texture vertices

usemtl matl_FACE

f 1/2/1 2/4/1 4/3/1
f 1/2/1 4/3/1 3/1/1
f 2/2/2 6/4/2 8/3/2
f 2/2/2 8/3/2 4/1/2
f 6/2/3 5/4/3 7/3/3
f 6/2/3 7/3/3 8/1/3
f 5/2/4 1/4/4 3/3/4
f 5/2/4 3/3/4 7/1/4
f 5/2/5 6/4/5 2/3/5
f 5/2/5 2/3/5 1/1/5
f 3/2/6 4/4/6 8/3/6
f 3/2/6 8/3/6 7/1/6
12 elements

http://www.gdmag.com

must have the vertex values.

The final block in the file begins with
the usemtl mat1_FACE. This says to the
loader, from now on all faces defined
should use the matl_FACE material. This
material is defined in the cube.mtl file.
All lines that begin with an f describe a
face in the model. Each face can be
composed of multiple vertices. Each
face is not required to have the same
number of vertices. However, because it
is more efficient for 3D hardware if all
faces have the same number of vertices,
I make sure this is the case. I could tes-
sellate the face to triangles at run time,
but this is really easy to do in the mod-
eling program. Therefore, I just make it
a requirement that all models are trian-
gulated before exporting. A pop-up box
in the loader can warn users that a face
is not triangulated.

In the face statement each vertex is
defined by three elements separated by
forward slashes that describe the ver-
tex, texture coordinate, and normal for
that face. The values are indices into
the list of elements already defined.
It’s important to notice that these
indices are one-based instead of zero-
based. In a file that only has vertex
coordinates (and not normals or tex-
ture vertices), the vertex index will be
followed by two slashes as in f 1// 2//
3//. Likewise, if there is a vertex and a
normal, the format is f 1//1 2//2 3//3
and so on. Each vertex in the line is
separated by a space.

You can see a material file in Listing
3. The file can describe multiple materi-
als. Each one begins with newmtl and the
name of the material in this case
mati_FACE. The next lines Ka, Kd, and Ks
respectively describe the ambient, dif-
fuse, and specular color for the materi-
al. The Ns term describes the specular
highlight. I have never had a need for
theNi and i1lum term, though they are
there if you want them. Finally, the
map_Kd describes the diffuse map applied
to the object. In other words, this is the
texture map that should be applied to
the surface. I use this name as the name
of the file loaded by the application. I
just convert the image to a .TGA or
.BMP file to make use of existing file
loading code.

See there, I said it was an easy format.
Actually there are other blocks that may
be useful in a real-time simulation that
are not in my sample file. The g com-
mand allows faces to be grouped

GAME DEVELOPER

together so the file can contain multi-
ple objects even in a hierarchy. This is
definitely handy when working with
hierarchical characters.

Writing a .0BJ File Loader

he MFC (String class makes string

manipulation much easier than in
basic C. For custom tools, this means
loading ASCII file formats is easier than
ever. My strategy is to load a line of
text from the file and then break it up
into a string of words in a CStringhrray
structure. If you haven’t used the
CString class, it will bring back fond
memories of BASIC string handling.

I don't want to go through the entire
.OBJ loader here. You can just grab it
off the web site (http://www.
gdmag.com). However, my strategy for
loading an .OB] file is to pass through
the file once, determining how many
vertices, normals, and texture coordi-

nates for which I need to allocate
space. Then, all the actual coordinate
values are simple to load in. The only
tricky part comes in when I want to
load in the face indices. You can see
how I approached that in Listing 4.
The point of this loader is not for me
to show highly optimized, well formu-
lated code samples for loading these
files. My code here certainly is not fine-
tuned in any sense of the word. The
great thing about creating production
tools is that, unlike almost all other

LISTING 3. MTL file for the Cube.

newmtl mati_FACE

Ka 0.5000 0.5000 0.5000
Kd 0.7000 0.7000 0.7000
Ks 1.0000 1.0000 1.0000
Ns 50.0000

Ni 1.0000

i11um 2

map_Kd FACE.pic

LISTING 4. Handling a face line in an .0BjJ.

T T

/] Procedure: HandleFace
// Purpose:
// a face Structure

Handles the Face Line in an 0BJ file. Extracts index info to

// Arguments: Array of words from the face line, place to put the data

// Notes:

Not an Official OBJ loader as it doesn’t handle more then

/l 3 vertex polygons. This only handles Triangles
I T

void HandleFace(CStringArray *words,t_faceIndex *face)

{

{11 \ocal Variables ////1/11111111TNTNENENEIEN LT

int loop;

CString temp;

CString vStr,nStr,tStr;
int nPos,tPos;

// HOLD POINTERS TO ELEMENT POINTERS

LT T
// LOOP THROUGH THE 3 WORDS OF THE FACELIST LINE, WORD O HAS °f°

for (Lloop = 1; loop < 4; loop++)
{
temp = words->GetAt(Loop);

// GRAB THE NEXT WORD

// FACE DATA IS IN THE FORMAT vertex/texture/normal

tPos = temp.Find(‘/°);
vStr = temp.Left(tPos);
temp.SetAt(tPos,” °);

nPos = temp.Find(*/);

// FIND THE ‘/° SEPARATING VERTEX AND TEXTURE
// GET THE VERTEX NUMBER

// CHANGE THE /- TO A SPACE SO I CAN TRY AGAIN
// FIND THE /° SEPARATING TEXTURE AND NORMAL
tStr = temp.Mid(tPos + 1, nPos - tPos - 1);

// GET THE TEXTURE NUMBER

nStr = temp.Right(temp.GetLength() - nPos - 1); // GET THE NORMAL NUMBER

face->v[loop - 1] = atoi(vStr);
face->t[loop - 1] = atoi(tStr);
face->n[loop - 1] = atoi(nStr);
}
}

// STORE OFF THE INDEX FOR THE VERTEX
// STORE OFF THE INDEX FOR THE TEXTURE
// STORE OFF THE INDEX FOR THE NORMAL

11111 WandLeFace //1/11ITTTITTITIEIEEIELEEIEELELELIEENE T TEE LD LD DT

DECEMBER 1998

http://www.gdmag.com

L T T RS B O AN, M e, Sl C e bl
PoT AL LRSS iFisquired by e U S0, e

e el == S coding in the game industry, the focus
is not directly on the speed of the rou-
e W e ¥ idapes S o il . Wy PO S o, P tine. It doesn’t have to be very fast. In
: fact, when working on tools, it is often
better to sacrifice speed for clarity.
T T e e B T e T T e Often, a tool that you create now and
will have a long life and pass through
many hands after you. This is not usu-
ally true of the actual game code (no
matter what your producer may want
to think) as most core game routines
are rewritten for each project. Tools
tend to linger.

The point of showing these types of
file loading routines is to demonstrate
how easily it can be done. I talk to pro-
grammers who say they understand the
algorithms but have no models with
which to work. They are not comfort- @

Pl g AL A SR S WE TP M B FEpT—

- — i e able writing a 3D Studio MAX plug-in
to get models. I hope that this shows
that very commonly used 3D file for-
mats can be easily integrated into your
own production tools. Once you build
up a library of routines like this, you
can easily get models to work within
your game applications. If you create a
loader for a commonly used format,
there are models everywhere that you
can use. For actual production applica-
tions, I tend to create custom binary
formats because they are compact and
exactly tuned to the application. But by
loading a general format, you can easily
make a file converter.

This month, I have provided an appli-
cation that allows you to load two .OB]
files that have identical vertex arrange-
ments. You then can use the slider to
morph between the two. The program
can handle objects with and without
texture mapping. Grab it at the Game
Developer web site at http://www.-
gdmag.com. Special Thanks to Bennie
Terry for providing the model, and to
Eddie Smith for providing the texture
map for the LAG14 character from their
real-time action title, ARIES PROJECT. m
- FOIRNFIVIRENHIEIRSSNVFO!
o You can find a list of 3D file formats and

mrarna 1 frras their specs at:
http://www.cica.indiana.edu/graph-
ics/3D.objects.html

Rule, Keith. 3D Graphics File Formats : A
Programmer's Reference. Addison-
Wesley, 1996.

Covers the .0BJ, .3DS, and VRML file
formats, among others.

http://www.gdmag.com DECEMBER 1998 GAME DEVELOPER

	back:

