
j e f f l a n d e r G R A P H I C C O N T E N T

17w w w . g d m a g . c o m

E veryone has their favorite
memory of watching a classic
Tex Avery or Chuck Jones
cartoon. For many, these
moments usually involve one

of the characters being drastically
deformed by a large and massive object.
Simple 2D drawings made the physically
impossible seem natural, believable, and
fun for the kids.

Last month, I discussed how to use the
power of new graphics hardware to give
characters more life. Using matrix defor-
mation techniques along with interpolated
morphing of meshes has gone a long ways
toward improving real-time character ani-
mation. However, creating the illusion of
life needed for truly realistic characters
requires more sophisticated techniques.
According to John Lasseter (see Refer-
ences, p. 22), one of the chief advantages
of computer animation is the ability to
combine techniques in layers to achieve

more complex and realistic results.
This idea of layering can be applied to

real-time character animation to make
characters more realistic. In the past in this
column, I have talked about how a skeletal
animation system is composed of a hierar-
chical structure of matrices (also referred
to as bones) to provide the base animation
layer for the character. The matrices are
attributed {Edit OK?} to a mesh “skin” by
vertex weight assignments that relate each
vertex to matrices in the system. These
matrices are then kinematically animated
to provide the motion.

However, fine details in a matrix defor-
mation system are difficult to achieve. In
order to create detailed articulation, such
as for fingers or facial expressions, a great
many matrices must be used. This increas-
es both the production time required for
creating these characters and the processor
time needed to render the character, thus
reducing run-time performance.

Vertex morphing techniques are a very
useful animation tool for efficiently achiev-
ing fine detailed animation. Vertex morph
animations for facial expressions and hand
poses are easy to create and require mini-
mal processing at run time. Typically, a
single vertex morph target involves moving
a very small subset of the vertices in a base
mesh. The vertex morphing layer can pro-
vide the input to the skeletal animation
layer, thereby providing a very flexible ani-
mation system.

Dropping a Virtual Anvil
on My Characters

A fter a long afternoon of Cartoon Net-
work research, I decided that it was

time to combine my cartoon renderer (see
“Shades of Disney: Opaquing a 3D
World,” Graphic Content, March 2000)
with some animation techniques so that I
can start smashing things up. In their
compelling work The Illusion of Life (see
References), Frank Thomas and Ollie
Johnston outlined the use of squash and
stretch, exaggeration, follow-through, and
overlapping action as key components for
character animation. The combination of
a skeletal animation system with vertex
morphing described above allows for a lot
of character control. However, these ani-
mation controls are not well suited to cre-
ating characters that can dynamically
squash and stretch. As I described last
month (“To Deceive Is to Enchant: Pro-
grammable Animation”), the matrices in a
skeletal animation system are full transfor-
mation matrices that can be translated,
rotated, and scaled. These structures pro-
vide a great deal of local control over the
vertices that the matrix influences. It cer-
tainly seems that matrix manipulation is a
possibility for achieving some nice squishy
effects. However, manipulating the control
matrices individually can be tedious. Ani-
mators need a more intuitive parameteri-
zation of these properties in order to
achieve fluid results.

In This Corner...
The Crusher!

A U T H O R ’ S B I O || Cartoon inspirations come to Jeff after an afternoon at the brewery. If
you have any visions you want to share, please contact him at jeffl@darwin3d.com.

FIGURE 1. A free-form deformation lattice around a body.

G R A P H I C C O N T E N T

j u n e 2 0 0 0 | g a m e d e v e l o p e r18

Sederberg and Parry (see References) introduced the use of
free-form deformations (FFDs) as an efficient method for ani-
mating soft bodies via a structural hyperpatch. By abstracting
the control surface from the surface of the animated body, the
deformation controls can be manipulated without regard to the
model itself. This technique has been used successfully to model
semi-elastic surfaces.

An FFD works by positioning a 4×4 lattice of control vertices
(CVs) around the model you wish to deform, as you can see in
Figure 1. This lattice is aligned along the global X-, Y-, and Z-
axes for clarity. It also makes sense to align it with the model’s
principal axes. These CVs are the controls the animator (or simu-
lation, but I don’t want to get ahead of myself) will manipulate to
animate the object.

In order for the control vertices to change the model, I need to
establish a relationship between the control lattice and the
model. For this I’m going to use a cubic Bézier volume. This
structure is composed of a 3D lattice of Bézier curves of degree 3
(cubic) which share control vertices. This gives me a total of 64
control vertices in a 4×4×4 grid. (For more information on the
mathematics of Bézier curves and patches, see Brian Sharp’s arti-
cle on curved surfaces as well as Alex Ferrier’s introduction to
free-form deformations on Gamasutra.com, both in the Refer-
ences box.)

To evaluate a Bézier curve, I need a function that takes a point
along the curve I wish to evaluate and returns the position. There
is a function called the Bernstein basis function that serves this
purpose. For a cubic curve, it takes the form

where pn represents the control vertices. To extend this function to
a Bézier volume, it becomes a function of three variable (u,v,w)
which represents the 3D position within the Bézier volume. The
full formula for the Bézier volume basis function is:

It seemed to me that layering the FFD technique into my ani-
mation system would allow me to get the results I wanted. How-
ever, in order to deform a mesh using this FFD lattice, I need to
pass every vertex through this function to evaluate its deformed
position. That’s 27 evaluations of the Bernstein basis function at
every vertex. This amounts to quite a few calculations that would
fall under the CPU’s responsibility.

It occurred to me that the control vertices look an awful lot like
matrices in my standard animation pipeline. Even more interesting
is the fact that matrix deformation techniques can be accelerated
by some graphics hardware. If I can frame the FFD problem in
terms of a matrix deformation system, I can use this hardware to
relieve the CPU and also streamline my animation pipeline.

The basis functions serve the role of relating the control vertices
to the vertices in the base mesh. For matrix deformation, the ver-
tex weights relate the control matrix in the same role as the vertex
weights in a skeletal animation system {Edit OK? I think a word
got left out}. If I treat each control vertex in the FFD lattice as a
matrix, I need to create the weights to relate that matrix to the
base mesh. This brings me back to the basis functions. Each con-
trol vertex in the control curve influences a certain portion along

B u v w p B u B v B wijk
kji

i j k
3

0

3

0

3

0

3
3 3 3, ,() = () () ()

===
∑∑∑

B u u p u u p u u p u p3 3

0

2

1
2

3
3

41 3 1 3 1() = −() + −() + −() +

FIGURE 2. Bézier Basis Functions

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0.0

B0 B1 B2 B3

LISTING 1. Converting the FFD function to vertex weights.

///
// Function: SetFFDWeights
// Purpose: Approximate an FFD by setting up control
weights
// Arguments: Pointer to base mesh visual structure
///
void SetFFDWeights(t_ToonVisual *visual)
{
/// Local Variables ///

tVector *vertex;
int loop,cvLoop;
float XBasis[4], YBasis[4], ZBasis[4];
float u, v, w;
float *vertexWeight;
int px,py,pz;

///
// Allocate the space for all the weights
visual->weightData = (float *)malloc(visual->vertexCnt *

FFD_NODE_COUNT * sizeof(float));
vertex = visual->vertex;
// Go through all the vertices
for (loop = 0; loop < visual->vertexCnt; loop++, vertex++)
{
// Find where each vertex is within the FFD grid
// Effectively scales each vertex to 0-1
u = (vertex->x - g_FFDmin.x)/(g_FFDmax.x - g_FFDmin.x);
v = (vertex->y - g_FFDmin.y)/(g_FFDmax.y - g_FFDmin.y);
w = (vertex->z - g_FFDmin.z)/(g_FFDmax.z - g_FFDmin.z);

continued on page 20

the length of the curve. If I examine the influence each CV has on
the curve I get the formulas:

These formulas show the influence each control vertex has on
the curve, which you can see graphically in Figure 2. Each control
vertex has an influence over a region of the volume. These func-
tions will provide the vertex weighting data I need.

To attach a FFD lattice to an object, I take the base mesh and

place it within the FFD lattice. The weights are calculated for each
vertex by scaling the vertex position to a value between 0 and 1.
This represents the relative position of the vertex within the lat-
tice. The scaled value is plugged into the three basis functions for
each control vertex and out pops a vertex weight that relates the
mesh vertex to that CV. Listing 1 contains the code that calculates
these weights. You can also see the influence of a single CV on the
mesh in Figure 3.

One restriction required in order for matrix deformation to
work is that the sum of the weights on any one vertex must equal
one. Fortunately for us, the wonders of mathematics are working
in our favor. Due to the very nature of the Bézier basis functions,
the sum of the influences at any point along the curve is always
equal to one. You gotta love how well that works out.

Once these weight values are calculated for each vertex, I can
run this object through my matrix deformation system and start
moving control vertices around. As each CV moves, it deforms the
base mesh through the weight values. In fact, I get a bonus over
the traditional FFD system. I can apply other transformations on
these control points. I can rotate and scale them, giving me even
more control over the mesh. However, I still need to move each
CV individually to make anything happen. I will need to add a
control mechanism to make them move together.

Controlling the Squishy Beast

F or many applications, manually positioning the FFD control
vertices will work fine. Often, though, I will want them all to

move together like a single flexible object. Fortunately, I have
played around with something like this in the past. You may recall
my column last year on the topic of soft-body dynamics (“Colli-
sion Response: Bouncy, Trouncy, Fun,” Graphic Content, March
1999). In that column, I connected point masses together using
dampened springs. I could then toss those objects around and
they bounced off the walls and floor in a flexible manner.

For this application, I will make the point masses the control
vertices in my FFD lattice. I then connect those points together
with a network of springs in the same way as I did in my March

B u u p u u p u u p u p

B u B p B p B p B p

B u

B u u

B u u

B u

3 3

0

2

1
2

3
3

4

3
0
3

0 1
3

1 2
3

3 3
3

4

0
3 3

1
3 2

2
3 2

3
3 3

1 3 1 3 1

1

3 1

3 1

() = −() + −() + −() +

() = + + +

= −()
= −()
= −()
=

G R A P H I C C O N T E N T

j u n e 2 0 0 0 | g a m e d e v e l o p e r20

FIGURE 3. Weight values for a control vertex.

LISTING 1 (continued). Converting the FFD function to vertex weights.

continued from page 18
// X Bezier Basis Functions
XBasis[0] = (1.0f - u) * (1.0f - u) * (1.0f - u);
XBasis[1] = 3.0f * u * (1.0f - u) * (1.0f - u);
XBasis[2] = 3.0f * u * u * (1.0f - u);;
XBasis[3] = u * u * u;

// Y Bezier Basis Functions
YBasis[0] = (1.0f - v) * (1.0f - v) * (1.0f - v);
YBasis[1] = 3.0f * v * (1.0f - v) * (1.0f - v);
YBasis[2] = 3.0f * v * v * (1.0f - v);;
YBasis[3] = v * v * v;

// Z Bezier Basis Functions
ZBasis[0] = (1.0f - w) * (1.0f - w) * (1.0f - w);
ZBasis[1] = 3.0f * w * (1.0f - w) * (1.0f - w);
ZBasis[2] = 3.0f * w * w * (1.0f - w);;
ZBasis[3] = w * w * w;

// Pointer to Place to store weight data
vertexWeight = &visual->weightData[loop * 64];
// Go through the control vertices
for (cvLoop = 0; cvLoop < FFD_NODE_COUNT;

cvLoop++,vertexWeight++)
{

// Some quick math to find the component indices
px = FFD_WIDTH - (cvLoop % FFD_WIDTH) - 1;
py = FFD_HEIGHT - (cvLoop / (FFD_WIDTH * FFD_HEIGHT)) - 1;
pz = FFD_DEPTH - ((cvLoop % (FFD_WIDTH * FFD_HEIGHT)) /

FFD_WIDTH) - 1;

// set the vertex weight for this CV
*vertexWeight = (XBasis[px] * YBasis[py] * ZBasis[pz]);

}
}

}
/// SetFFDWeights ///

1999 column so the lattice will be some-
what stable when I drop it. When I run the
object through my particle dynamics simu-
lator, the control vertices start bouncing
around. Since these control vertices are
used to deform the base mesh, the mesh
bounces along also. Just for fun, I applied
the cartoon shader to the objects so I can
really get that Saturday morning, “bang
him on the head with a skillet” feel.

You can see the application in action in
Figure 4. I loaded in my cartoon car and
bashed around some of the CVs to flatten
the roof.

Putting It All Together

A dding this technique for using FFD
lattices in a character animation sys-

tem opens up some interesting possibili-
ties. The FFD can be positioned in the
skeletal hierarchy such that transforma-

tions are inherited
from parent matri-
ces. That way an
FFD lattice can be
applied, for exam-
ple, to an upper
arm so that the
muscles will bulge.
You would need to
be careful with how
the weights blend
across the FFD
and skeletal links.
However, I have
found that scaling
and blending weights works very well.

There are a few problems with the use
of the mass-and-spring system for FFD
animation. My current system does not
preserve the volume of the original control
mesh. What that means is that the spring
system can find valid configurations where
it has collapsed inside itself. This may not
be totally realistic for certain solid but
flexible objects. For an object like my car,
though, it works in my favor. I sometimes
want the object to collapse inside itself and
stay there. If such behavior were not desir-
able, however, I could add a lot more
springs to the control mesh or I could use
another method for dynamically connect-
ing the control points that preserves the
volume of the object. I may take a look at
that issue in another column.

Another problem is a rendering one.
When I deform the mesh, I am moving
vertices all around. This changes the sur-
face quite a bit and I am not currently
adjusting the surface normals to match,
which causes some problems with the
shading model. Unfortunately, this is a
tricky problem. To fix it, I would need to
rebuild the vertex normals by creating
new face normals and averaging them to
get new vertex normals. This is processor-
intense, but not terribly hard to code up. I
leave that up to industrious readers to add
to the sample application.

As a second layer of abstraction, it
would be interesting to make the FFD lat-
tice deform a skeleton inside the object
instead of individual vertices in the mesh.
That would definitely speed up the calcula-
tions, as there would be a lot fewer points
to process. However, it would also lower
the amount of control.

There’s also nothing stopping you from
using lower- or higher-degree Bézier vol-
umes. I chose cubic because it seemed to
provide a good flexibility-to-performance
tradeoff. For other objects, more or less
control may be needed.

Another interesting extension to this
technique would be to make some of the
lattice springs active instead of passive,
thereby creating virtual “muscles” that
animate the object automatically. I will
look more into that next month. For now,
grab the application and source code at
www.gdmag.com and start smashing
things around. q

G R A P H I C C O N T E N T

j u n e 2 0 0 0 | g a m e d e v e l o p e r22

O ne of the fun things about writ-
ing this column is all the great
mail I get from readers. For
anything I wonder about or

miss, one of you always is quick to let me
know about it.

In my last December’s column on 2D
water effects (“A Clean Start: Washing Away
the Millennium”), I mentioned that I didn’t
know who wrote the original version of this
idea. Several people wrote in, the first being
Juan Carlos Arevalo Baeza who wrote that
the effect was done for Heartquake, a demo
entered in a competition {Edit OK?} in Hel-
sinki by Arturo Ramirez-Montesinos of the
demo group Iguana in 1994. He based the
idea on a crude approximation of the 2D gen-
eral wave propagation formula. You can get
the original demo at ftp://x2ftp.oulu.fi/pub/
msdos/programming/iguana/heartq.zip.

I also received a note from Fabio Policarpo
who is working on a book on game pro-
gramming with Alan Watt. He integrated the
cartoon rendering technique into his Fly
engine that will be the basis of the book. He
has a great demo of a cartoon car driving
around a terrain. You can download the
demo at www.paralelo.com.br/download/
car-toon.zip.

C L E A R I N G O U T M Y
E - M A I L B O X

FIGURE 4. A taxicab in a meteor storm.

B Lasseter, John. “Principles of Traditional Anima-
tion Applied to 3D Computer Animation.” Pro-
ceedings of Siggraph ‘87. In Computer Graphics
(Vol. 21, No. 4): July 1987.

B Thomas, Frank, and Ollie Johnston. Disney Ani-
mation: The Illusion of Life. New York: Abbeville
Press, 1984.

B Sederberg, Thomas, and S. R. Parry, “Free Form
Deformations of Solid Geometric Models.” Pro-
ceedings of Siggraph ‘86. In Computer Graphics
(Vol. 20, No. 4): August 1986.

B Sharp, Brian. “Implementing Curved Surface
Geometry” (Game Developer, June 1999).

B Ferrier, Alex. “Real-Time Soft-Object Animation
Using Free-Form Deformation.”
www.gamasutra.com/features/19990827/
deformation_01.htm.

B Chadwick, John, and others. “Layered Construc-
tion for Deformable Animated Characters.” Pro-
ceedings of Siggraph ‘89. In Computer Graphics
(Vol. 23, No. 3): August 1989.

R E F E R E N C E S

