
b y J e f f L a n d e r G R A P H I C C O N T E N T

This is particularly true of accessing
information. When I was initially learn-
ing 3D graphics for display on my lowly
Apple II (and then on my Amiga), I real-
ly had to dig. I was fortunate to live near
several major universities, and when
SIGGRAPH was in Anaheim, it was right
in my backyard. I would also comb
through magazines and journals trying
to figure out what the heck was going
on. The books were never up-to-date on
the latest techniques, and the people
who were working on the coolest things
were scattered all over the world. I could
never afford to attend the seminars and
symposiums where the professors met

and compared notes, so I waited for the
printed word to get back to me.

Today, all of this information is at
your fingertips. Most journals and
papers are now available directly online.
All researchers post their papers on their
own web pages before they’re published
in print. Even better, the people creat-
ing this work post their e-mail addresses
on these pages. Now I can read up on
the latest and greatest. If I have any
questions, I just ask the author. Most
impressive of all, the majority of these
authors get right back to you and are
flattered that you find their work inter-
esting. Imagine being a kid in California
and hearing about an Englishman
named Newton. This guy has just come

up with some interesting ideas about
how things react when they bump into
each other. So, because you’re trying to
make a pinball game, you fire off an e-
mail about the problem. Newton fires
back a quick explanation of his third
law of motion, complete with animated
.GIFs of things bouncing into each
other. I can’t wait to see what this gen-
eration of kids will come up with.

Bend without Breaking

So this brings me to my current
problem. In my last column, I want-

ed to deform a skin mesh to a set of
bones in a hierarchy (“Better 3D: The
Writing Is on the Wall,” April 1998). A
real-time 3D character created from a
single deformed mesh looks much better
than one made up of separate objects.
Every major 3D graphics animation
package has a method of deforming a
single mesh object. Most of them work
by embedding some form of bone sys-
tem inside the character, then using
these bones to influence the shape of the
mesh. This is the approach that I wanted
to take for my character animation.

Not wanting to build a bridge where
there was already a tunnel, I hit the
books. Just by looking through the SIG-
GRAPH proceedings and hitting the

h t t p : / / w w w . g d m a g . c o m M A Y 1 9 9 8 G A M E D E V E L O P E R

11

Skin Them Bones:

Game Programming

for the Web Generation

W ell, it’s true. The Internet has really changed things, and I don’t

mean in the way the news has been hyping it. Although it

hasn’t quite lived up to all of the media hoopla, the Internet

has changed the way people communicate.

When not bending the bones of some strange alien creature, Jeff can be found hang-
ing out at his studio at the beach. See if you can smack some sense into him by writ-
ing to jeffl@darwin3d.com.

F I G U R E S 1 a n d 2 . First the bare

arm skeleton, then with skin applied.

F I G U R E 3 . The arm skeleton once it

has been weighted and deformed.

Web, I came up with a whole bunch of
stuff on character animation. These
sources provided a good start, but
weren’t quite right for my purposes. I
followed up on some references in those
papers and still wasn’t satisfied that I
had found anything that directly
applied. So, I fired off some e-mail to the
different authors and some colleagues,
asking if they knew any good sources for
information. Amazingly, I received over
an 80 percent return on those e-mails —
including responses from some of the
biggest names in computer graphics over
the past decade. I don’t know why I was
ever intimidated by asking questions of
the people best suited to answer them.
Every one of them helped and encour-
aged me. Within a week, I was plowing
through a pile of information and sug-
gestions.I encourage everyone to ask
questions, but keep in mind that you
should be willing to reciprocate.

My basic approach was pretty sound.
I really like the way Softimage handles
skeletal deformation. It allows you to
individually weight a vertex in a mesh
to any bone in a skeleton. These weights
represent the degree of influence each
bone has on the final position of that
vertex. This allows me a much greater
degree of control than if I were working
with a system that only had a sphere of
influence with a falloff. My research
convinced me that if I were to build a
real-time system for displaying these
weighted meshes, I could create quite
compelling 3D characters. As a bonus, I
could use the weighting interface from
Softimage and preview how the animat-
ed character would look in the game.

For my sample mesh, I created a two-
bone hierarchy to represent my arm
(Figure 1). The blue bone represents the
upper arm, and the red bone
represents the lower arm. I then
attached the mesh for the arm
to this two-bone hierarchy
(Figure 2). Applying the weights
to each vertex and rotating the
lower arm produced a deformed
mesh (Figure 3). I took special
care in weighting the vertices
near the joint between the two
bones. If I allow one bone to
completely influence (weight
100 percent) the vertex posi-
tion, then it’s possible that in
certain orientations, the mesh
will fold in on itself. You’ll
achieve better results when each

bone contributes to the final vertex
position. Figure 4 shows the Softimage
interface for editing vertex weights.
This is an example of an individual ver-
tex being weighted between two bones.

Once I’d the weighted mesh, I needed
a way to perform the deformation. I cre-
ated the prototype for the deformation
engine in OpenGL. OpenGL can get this
type of tool up and running very quick-
ly. From there, you can easily port the
routines over to the API or platform of
your choice. As an added benefit, the
resulting image in the tool is identical to
the preview window in Softimage
because Softimage uses OpenGL for its
real-time display. When you’re trying to
develop and debug pathways, this elimi-
nates one source of image problems.

DisplayLists has proved itself very
effective for drawing static geometry. For
my application, I wanted to display the
bones in the user interface in the same
way that Softimage draws them (as a dia-
mond shape). The code to create the
bone geometry DisplayList appears in
Listing 1. The routine descends the hier-
archy and creates the diamond-shaped
display if a bone has a child. I used the y
translation element of the child to deter-
mine how long the bone should be. To
make it easy to access the DisplayList
later, I used the ID for the bone as the
list number. You can see the results of a
two-boned arm hierarchy in the
OpenGL application in Figure 5.

Matrix Fun

M y process for deforming the mesh
was simple. I calculated the posi-

tion of each affected vertex as if it were
completely under the influence of each

bone. I then used the weighting values
to interpolate between these positions.
Let’s look at that in different terms.

For each vertex
finalPosition =
(position[1] * weight[1]) +
(position[2] * weight[2]) + …
where each position[N] is the initial

position of that vertex multiplied by
the transformation matrix of bone N.

However, to efficiently calculate the
position of each vertex as it would be
transformed by each bone, I needed to
know each transformation matrix in
the hierarchy. I obviously didn’t want
to recalculate the matrix for each bone
at every vertex. So during an initial
pass, I stored the transformation matrix
as it accumulated down the hierarchy.
The OpenGL method of handling a
hierarchy of transformations via a
matrix stack is very efficient — as you
may remember from my article on
motion capture (“Working with Motion
Capture File Formats,” January 1998).

The call to get the current matrix is
ggllGGeettFFllooaattVV((GGLL__MMOODDEELLVVIIEEWW__MMAATTRRIIXX,, ffllooaatt

**mmaattrriixx));;

This returns the sixteen values that
make up the current matrix. The values
are laid out as follows:

Note that this representation (called
column-major) is different from many
matrix routines you may see (usually
row-major). Because of this difference,

M v() =

00 04 08 12

01 05 09 13

02 06 10 14

03 07 11 15

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

F I G U R E 5 . Displaying the skeleton.

F I G U R E 4 . Softimage interface for editing

vertex weights.

if you declare the matrix structure to be
ffllooaatt mmaattrriixx[[44]][[44]] you’ll get the wrong
result when trying to access the data in
C. It’s much better to use ffllooaatt mmaattrriixx[[1166]]
for your matrix storage. This is how
OpenGL handles this procedure.

The matrices are stored in the bone
structure for use when I actually calcu-
late the positions. I have found this rou-
tine to be notoriously slow in OpenGL
implementations. However, since the
call to get matrix is only done once per
frame for each bone in the system, it’s
not a big problem. For speed-critical
applications, it may be wise to create
your own matrix stack and matrix rou-
tines to speed up this process.

The code for saving the matrices is in
Listing 2. It’s a recursive call that will
descend the hierarchy. At each node, it
will draw an axis at the root of that
bone. If that bone has a child, it will
draw the bone geometry that I created
earlier and highlight any selected bone.
Note that the transformation operations
are called in reverse order. OpenGL han-
dles matrix operations this way. You
may need to change this if you use a dif-
ferent API. This OpenGL feature causes a
great deal of confusion for many people
starting to work with the API.

At this point, I had to calculate the
positions for each vertex. I could have
called a ggllLLooaaddMMaattrriixx for each bone.
However, the call to ggllLLooaaddMMaattrriixx is par-
ticularly slow (it would be called for
each bone for each vertex). I wanted to
avoid this one, because it would be
called for each bone for each vertex. I
could’ve avoided the issue by multiply-
ing out all the vertex positions by each
bone and storing all the intermediate
results. However, that approach can be
a huge memory issue for a mesh of sig-
nificant size, so I decided against it. I
chose instead to implement my own

MMuullttVVeeccttoorrBByyMMaattrriixx routine to calculate
the intermediate positions. The draw-
back to this method is that you loose
any benefit from 3D transformation
hardware that you may have. This isn’t
an issue for consumer 3D hardware
cards because they don’t have hard-
ware transformation acceleration. This
may change in the future or in specific
applications, so you’ll have to evaluate
the costs and benefits for yourself.

I multiplied each vertex by the matrix
for every bone that vertex influences. I
needed to subtract the root position of
each bone from the vertex first in order
to be sure that it was rotated about the
bone’s base. I calculated this distance
back in during the matrix multiplica-
tion. I combined the results of all these
calculations using the weight values to
arrive at the final position for each ver-
tex. I now have a mesh that is deformed
in world space according to the settings
of the bones controlling it. This mesh
can be drawn as any other 3D mesh

object. You can see the results in a stand-
alone OpenGL application in Figure 6.

Is it Worth it?

Inow have a mesh object that can be
deformed realistically in real time.

This realism adds a lot of flexibility to
your application. You can use it to cre-
ate very compelling characters that react
to their environment. But all this flexi-
bility comes at a cost. Each vertex that is
affected by more than one bone requires
more calculations. The interpolation
code and all the extra matrix handling
add to the burden. I wouldn’t even use
these techniques on an enemy character
whose entire motion sequence is finite
and scripted. However, for a key charac-
ter who can make unique moves that
react to the people and environment
around him, it’s well worth it. The
image quality generated by a weighted,
deformed, single mesh is significantly

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

///
// Function: CreateBoneDLists
// Purpose: Creates the Displaylists for the Bones in a Skeleton
// Arguments: Pointer to a bone hierarchy
///
void COGLView::CreateBoneDLists(t_Bone *bone)
{

// ONLY MAKE A BONE IF THERE IS A CHILD
if (bone->childCnt > 0)
{

// CREATE THE DISPLAY LIST FOR A BONE
glNewList(bone->id,GL_COMPILE);

glBegin(GL_LINE_STRIP);
glVertex3f(0.0f, 0.4f, 0.0f); // 0
glVertex3f(-0.4f, 0.0f,-0.4f); // 1
glVertex3f(0.4f, 0.0f,-0.4f); // 2
glVertex3f(0.0f, bone->children->trans.y, 0.0f); // Base
glVertex3f(-0.4f, 0.0f,-0.4f); // 1
glVertex3f(-0.4f, 0.0f, 0.4f); // 4
glVertex3f(0.0f, 0.4f, 0.0f); // 0
glVertex3f(0.4f, 0.0f,-0.4f); // 2
glVertex3f(0.4f, 0.0f, 0.4f); // 3
glVertex3f(0.0f, 0.4f, 0.0f); // 0
glVertex3f(-0.4f, 0.0f, 0.4f); // 4
glVertex3f(0.0f, bone->children->trans.y, 0.0f); // Base
glVertex3f(0.4f, 0.0f, 0.4f); // 3
glVertex3f(-0.4f, 0.0f, 0.4f); // 4

glEnd();
glEndList();
// CHECK IF THIS BONE HAS CHILDREN, IF SO RECURSIVE CALL
if (bone->childCnt > 0)

CreateBoneDLists(bone->children);
}

}

L I S T I N G 1 . Displaylists for skeleton.

F I G U R E 6 . OpenGL deformed mesh.

better than a character composed of sep-
arate objects, or whose joints are simply
skinned over. Also, since you only need
to store the orientations of the base
skeleton, you can save a lot of memory
on animation over straight, prede-
formed, single mesh characters.

The Application

T he sample application that accom-
panies the article allows you to

play with a deformable mesh. You can
control the orientation of the bones as
well as adjust the weighting on indi-
vidual vertices. This will allow those
who don’t have access to Softimage to
adjust the weighting on a deformable
mesh and see the results. The arm itself
is composed of an interleaved array of

triangles. Each triangle is vertex col-
ored to create a realistic shaded look.

I also used OpenGL’s feedback mecha-
nism to allow you to select vertices. I
don’t have space to cover that now.

Next issue I will address feedback as well
as some other user interface issues.

Grab the source and the executable
at the Game Developer web site at
www.gdmag.com. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

I never found any one source that

applied to the techniques I was using,

but many resources were very help-

ful. If you’re interested in learning

more, check out these publications:

Badler, Norman, et al. Simulating

Humans: Computer Graphics

Animation and Control. Oxford:

Oxford University Press, 1993.

Badler, Norman and M. A. Morris.

“Modelling Flexible Articulated

Objects.” Computer Graphics,

Proceedings of the Online (1982):

pp. 305-314.

Magnenat-Thalmann, N. and D.

Thalmann. Interactive Computer.

Upper Saddle River, N.J.: Prentice

Hall, 1996.

Parke, Frederic and Keith Waters.

Computer Facial Animation.

Wellesley, Mass.: A. K. Peters, 1996.

Terzopoulos, Demetri, et al. “Elastically

Deformable Models.” Computer

Graphics, Vol. 21, No. 4 (SIGGRAPH

1987): pp. 205-14.

RR EE SS OO UU RR CC EE SS

Thanks to the many people who have
contributed to my knowledge of these
techniques and methods over the past
six months. Here are a few of them:

Paul Atkinson, Norman Badler, Paul
Douglas, Chris Hecker, Hexapod,
Frederic Parke, Demetri Terzopoulos,
and Nadia and Daniel Thalmann.

Acknowledgements

///
// Function: drawSkeleton
// Purpose: Actually draws the Skeleton it is recursive
// Arguments: None
///
GLvoid COGLView::drawSkeleton(t_Bone *rootBone)
{
/// Local Variables ///

int loop;
t_Bone *curBone;

///
curBone = rootBone->children;
for (loop = 0; loop < rootBone->childCnt; loop++)
{

glPushMatrix();

// Set base orientation and position
glTranslatef(curBone->trans.x, curBone->trans.y, curBone->trans.z);

glRotatef(curBone->rot.z, 0.0f, 0.0f, 1.0f);
glRotatef(curBone->rot.y, 0.0f, 1.0f, 0.0f);
glRotatef(curBone->rot.x, 1.0f, 0.0f, 0.0f);

// THE SCALE IS LOCAL SO I PUSH AND POP
glPushMatrix();
glScalef(curBone->scale.x, curBone->scale.y, curBone->scale.z);

// DRAW THE AXIS OGL OBJECT
glCallList(OGL_AXIS_DLIST);
// DRAW THE ACTUAL BONE STRUCTURE
// ONLY MAKE A BONE IF THERE IS A CHILD
if (curBone->childCnt > 0)
{

if (curBone == m_SelectedBone)
glColor3f(1.0f, 1.0f, 0.0f); // Selected bone is bright Yellow

else
glColor3f(0.4f, 0.4f, 0.0f); // Selected bone is dull Yellow

// DRAW THE BONE STRUCTURE
glCallList(curBone->id);

}

// GRAB THE MATRIX AT THIS POINT SO I CAN USE IT FOR THE DEFORMATION
glGetFloatv(GL_MODELVIEW_MATRIX,curBone->matrix);

glPopMatrix(); // THIS POP IS JUST FOR THE SCALE

// CHECK IF THIS BONE HAS CHILDREN, IF SO RECURSIVE CALL
if (curBone->childCnt > 0)

drawSkeleton(curBone);

glPopMatrix(); // THIS POPS THE WHOLE MATRIX

curBone++;
}

}
//// drawSkeleton ///

L I S T I N G 2 . Grabbing the ModelViewMatrix.

	back:

