
b y J e f f L a n d e r G R A P H I C C O N T E N T

I have fought have been with myself. I
fight to bring back the knowledge I have
long since forgotten. I fight my desire to
play the latest action game when more
pressing needs are at hand (deadlines,
the semblance of a social life).

This month I document one of the
less glamorous battles — the battle of
the physics simulator. It’s not going to
be fun. It’s going to be a bit bloody.
However, if I ever hope to achieve a
realistic and interesting physics simula-
tion, it’s a battle that must be fought.
So, my brave warriors, join me.
Sharpen your pencils, stock your first-
aid kit with plenty of aspirin, drag out
the calculus book, and fire up the cof-
feepot. Let’s get started.

I hope you all had a chance to play
around with the soft body dynamics
simulator from last month. The demo
highlighted an interesting problem —
the need for stability. While creating
my dynamics simulation, I waged a
constant battle for stability. However,
in order to wage the war effectively, I
need to understand the roots of the
instability in the system. Last month, I
implied that the problem resulted from
my use of a simple Euler integrator. But
I didn’t really explain why that caused
the problem. Let me fix that right now.

Integrators and You

M any game programmers never
realize that when they create the

physics model for their game, they are
using differential equations. One of my
first programs on the Apple II was a
spaceship flying around the screen. My
“physics” loop looked like this:

ShipPosition = ShipPosition + ShipVelocity;

ShipVelocity = ShipVelocity +

ShipAcceleration;

Look familiar to anyone? It’s a pretty
simple physics model, but it turns out
that even here I was integrating. If you
look at the Euler integrator from last
month, I had
Position = Position + (DeltaTime * Velocity);

Velocity = Velocity + (DeltaTime * Force *

OneOverMass);

Now for my simple physics model,
DeltaTime = 1 and Mass = 1. Guess what? I
was integrating with Euler’s method
and didn’t even know it. If I had made
this Apple II physics model any more
complex, this integrator could have
blown up on me. These sorts of prob-
lems can be difficult to track down, so
it’s important to understand the causes.

When Things Go Wrong

T he reason that the Euler integrator
can blow up is that it’s an approxi-

mation. I’m trying to solve a differen-
tial equation by using an iterative
numerical method. The approximation
can differ from the true value and cause
error. When this error gets too large,
the simulation can fail. A concrete
example may help to explain. Last
month, I added a viscous drag force to
the simulation to add stability. The for-
mula for this force was

(Eq. 1)

In this formula, kd represents the
coefficient of drag that is multiplied by
the velocity of the particle. This coeffi-
cient determines how fast the velocity
of the object is dragged down to zero.
This is a very simple differential equa-
tion. In fact, it’s simple enough to be
satisfied for v directly by the formula. I
can use this exact solution to check the
accuracy of my numerical integrator:

(Eq. 2)
Euler’s method is used to approxi-

mate the integral curve of Equation 2
with a series of line segments along this
path. Each step along this path is taken
every time, interval h, via the formula

(Eq. 3)
In all cases, the viscous drag force

should approach zero. However, the
size of the step h and coefficient of
drag kd determine how well the
approximation performs. Take a look
at Figure 1.

With the given step size and drag
coefficient, Euler’s method may not be
a great approximation, but it gives the
desired result. The velocity converges
on zero. But take a look at the relation-
ship between the step size and drag
coefficient in Equation 3.

If
then the approximation

step will overshoot zero, as you can see
in Figure 2.

h
kd

> 1

w w hf t w

V V h k V
i i i i

i i d i

+

+

= + +
= + −

1

1

()

()

V e k td= −

F k Vd d= −

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 9 G A M E D E V E L O P E R

15

Lone Game Developer

Battles Physics Simulator

A s a real-time 3D graphics developer, I need to wage many battles. I fight

with artists over polygon counts, with graphics card manufacturers over

incomplete or incorrect drivers, and with some producers’ tendencies to

continuously expand feature lists. However, some of the greatest battles

Jeff is the technical director of Darwin 3D where he spends time calculating his rate
of procrastination with respect to his articles. E-mail optimization suggestions to
jeffl@darwin3d.com.

By increasing the step size, I was try-
ing to get a system that converged to
zero more quickly — but I got some-
thing entirely different. Things really
start to get bad when the drag coeffi-
cient increases more, as in Figure 3. As
each step is taken, not only does the
approximation oscillate across zero,
but it also actually diverges from zero,
and eventually explodes the system.
This is exactly what was happening in
the spring demonstration from last
month, when the box blew up.

How Can I Prevent Explosions?

I f you find a situation where your
simulator blows up, there’s an easy

way to see if this kind of numerical
instability is the cause. Reduce the step
size. If you reduce the size of the step
and the simulation works, then this
numerical instability is the problem.

The easy solution is always to take
small steps. However, realize that each
step requires quite a few calculations.
The simulation will run faster if it can

take fairly large step sizes. Unfortun-
ately, when you get lots of objects
interacting, these instability problems
appear even more. So, just when
things start to get interesting, you
need to reduce the step size and slow
things down.

I’d rather create an integrator that
would allow me to take large step sizes
without sacrificing stability. To do
this, I need to look at the origins of
Euler’s method.

Taylor’s Theorem

Y ou may remember Taylor’s
Theorem from calculus. It’s

named after mathematician Brook
Taylor’s work in the eighteenth centu-
ry. This theorem describes a method
for converging on the solution to a dif-
ferential equation.

(Eq. 4)
In Equation 4, Pn(x) represents the

nth Taylor polynomial. If you take the
limit of Pn(x) as , you get the
Taylor series for the function. If, how-
ever, the infinite series is not calculated
and the series is actually truncated,
Rn(x) represents the error in the system.
This error is called the truncation error
of approximation.

How does this apply to the problem
with which we are working? If I only
look at the first Taylor polynomial and
do some substitution, I get Equation 5.

(Eq. 5)
Notice how similar this equation is to

Equation 3. In fact, Euler’s method is
based on this equation. The only differ-
ence is that the last error term is

h x x

w t f t w t

w t w t hf t w t
h

w Ei i i i
n

= −
′ =

= + ++

()

() (, ())

() () (, ()) ()

0

1

2

2

n → ∞

f x P x R x

P x f x f x x x

f x
x x

f x
n

x x

R x
f E

n
x x

x E x

n n

n

n
n

n

n
n

() () ()

() () ()()

()
!

()

...
()
!

()

()
()
!

()

()

()

= +

= + ′ − +
′′ − +

+ −

= −

< <

+

0 0 0

0
0

0
0

0

0

2
2

1

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

60.0000

Actual

Time (Stepsize = 0.8 Kd = 0.8)

Euler

Ve
lo

ci
ty

50.0000

40.0000

30.0000

20.0000

10.0000

0.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E 1 . A decent approximation.

60.0000

Actual

Time (Stepsize = 0.8 Kd = 0.8)

Euler

Ve
lo

ci
ty

40.0000

20.0000

-20.0000

-40.0000

0.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E 2 . This looks a lot worse.

150.0000

Actual

Time (Stepsize = 0.8 Kd = 0.8)

Euler

Ve
lo

ci
ty

100.0000

50.0000

0.0000

-50.0000

-100.0000

-150.0000

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0

F I G U R E 3 . Kaboom!

dropped in Equation 5. By stopping the
series at the second term, I get a trunca-
tion error of 2. This gives Euler’s
method an error of order O(h2).

If I added another term of the Taylor
series to the equation, I could reduce
the error to O(h3). However, to com-
pute this exactly, I would need to eval-
uate the next derivative of f(x). To
avoid this calculation, I can do another
Taylor expansion and approximate this
derivative as well. While this approxi-
mation increases the error slightly, it
preserves the error bounds of the
Taylor method. This method of expan-
sion and substitution is known as the
Runge-Kutta techniques for solving dif-
ferential equations. This first expan-
sion beyond Euler’s method is known
as the Midpoint method or RK2
(Runge-Kutta order 2), and is given in
Equation 6. It’s called the Midpoint
method because it uses the Euler
approximation to move to the mid-
point of the step, and evaluates the
function at that new point. It then
steps back and takes the full time step
with this midpoint approximation.

(Eq. 6)
In fact, I can continue to add Taylor

terms to the equation using the Runge-
Kutta technique to reduce the error
further. Each expansion requires more
evaluations per step, so there is a point
at which the calculations outweigh the
benefit. I don’t have the space to get
into it here, however, I understand
that smaller step sizes are preferred
over methods above RK4 with an error
of (Faires & Burden, p. 195).
Runge-Kutta order 4 is outlined in
Equation 7.

(Eq. 7)
RK4 gives the simulation a very

robust integrator. It should be able to
handle most situations without blow-

ing up. The only issue now is what the
step size should be.

Watch Your Step!

E ven with a robust integrator such
as RK4, there will be times when

the simulation will be in danger of
blowing up. To keep this from hap-
pening, you may have to reduce the
step size at times. At other times, how-
ever, a large step size works fine. If my
simulator only has a single fixed step
size, I cannot take advantage of these
facts. If I vary the size of the steps
according to need, I could use large
steps when possible without sacrific-
ing stability.

This is how it works. I take full step
using my current integrator, then take
two steps half the current step size,
and compare the results. If the error
between the two results is greater than
a threshold, then the step size should
be reduced. Conversely, if the error is
less than the threshold, the step size
could actually be increased. This form
of control is known as an adaptive
step size method. Adaptive methods
are a major area of research in numeri-
cal analysis, and can definitely
improve simulation performance. I
chose not to implement adaptive step
size controls in my simulation.
However, this is an area where you
could improve the simulation.

Other Techniques

D ifferential equations are not easy
to learn and understand. How-

ever, the programmer who pursues this
knowledge has many weapons in his
arsenal. As witnessed by the birthdates
of Euler and Taylor, this research has
been going on for centuries. If you
ignore this work and strike out on your
own, you’re doing yourself a great dis-
service. Knowledge is available to the
developer as never before. While work-
ing on these algorithms, I was able to
cross-check formulas and techniques in
many different sources.

In fact, I’ve barely scratched the sur-
face of the field. The integrators I’ve
described (all explicit one-step meth-
ods) represent only a subset of the
methods available to the programmer.
Implicit integrators will also work. For

example, an implicit Runge-Kutta inte-
grator trades greater computations per
step for greater stability in particularly
difficult differential equations. Also,
the one-step nature of these integrators
reflects the fact that the method does
not consider any trends in the past
when calculating a new value.

In addition to these one-step meth-
ods, there are also multistep methods,
extrapolation algorithms, predictor-
corrector methods, and certainly many
others. Clearly, there is plenty of
ground for the adventurous program-
mer to explore. The book I used,
Numerical Algorithms with C, does a
good job of comparing different meth-
ods during a variety of test conditions.

For this month’s sample application
(available from Game Developer’s web
site), I have implemented both the
midpoint method and Runge-Kutta
order 4 in the dynamic simulation
from last month. You can switch
between integrators and adjust the
step size and simulation variables to
get a feel for how each performs. ■

k hf t w

k hf t
h

w k

k hf t
h

w k

k hf t h w k

w w k k k k

O h

i i

i i

i i

i i

i i

1

2 1

3 2

4 3

1 1 2 3 4

5

2
1
2

2
1
2

1
6

2 2

=

= + +

= + +

= + +

= + + + +()
+

+

(()

(,)

(,)

(,)

()

,

O h()5

w w h f t
h

w
h

f t w

O h

i i i i i i+ = + + +





+

1

3

2 2
(, (,)

()

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

In addition to the references cited last
month, a couple of other sources proved
very valuable during this article.

• Faires, J. Douglas and Richard Burden.
Numerical Methods.Second edition.
Pacific Grove, California: Brooks/Cole,
1998. This book provided a great dis-
cussion of measuring error in numerical
solutions. It also contains a great deal
of source code for all the algorithms.
• Engeln--Müllges, Gisela and Frank
Uhlig. Numerical Algorithms with C. ,
New York, New York: Springer-Verlag,
1996. In addition to the fine sections on
the methods discussed in this column,
this book describes and compares a
great number of other numerical meth-
ods. Additionally, the book has a great
number of references to articles on the
topic.
• Press, William H. et al., Numerical
Recipes in C. Cambridge, England:
Cambridge University Press, 1998.
While not as strong a reference on these
topics, this book may be interesting to
many, as it is available in electronic
form. See http://www.nr.com but also
check out a critical discussion of it on
http://math.jpl.nasa.gov/nr/nr.html.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

	back:

