
b y J e f f L a n d e r G R A P H I C C O N T E N T

As you’ll recall, I finished up with an
OpenGL application that converts Euler
angle data to quaternions and then dis-
plays the results. Now I want to extend
this application to allow for the inter-
polation of two keyframed positions. It
struck me that I should create a custom
3D first-person interface that effectively
demonstrates interpolation.

The Task

A s the project technical lead, I am
asked to create an interface for a

first-person fighting game. However,
the design calls for allowing the player
to create custom attacks in some sort of
pregame editor. The player does this by
manipulating an arm consisting of an
upper arm, a lower arm, and a hand
with a weapon. The player positions
this arm into two poses. One pose is
the beginning of the attack move and
the other pose is the end of the attack
move. During the game, this custom
action is triggered and creates a smooth
attack. The player’s effective use of this
interface determines the effectiveness
of the move. Several of these moves are
then combined to create a unique
fighting experience.

Alright, so it’s not revolutionary, but
it’s a well-defined task with a pretty
clear path of attack. As technical lead, I
like that. So how do I get started?

Clearly, the problem revolves around
the interpolation of the arm positions.

Interpolation

A s I discussed last month, one of
the key benefits of using a quater-

nion representation is the ability to
interpolate between keyframes. Nick
Bobick, in his article in the February
1998 issue of Game Developer, discussed
interpolation of quaternions (“Rotating
Objects Using Quaternions,” pp.38-39).
Bobick described the use of Spherical
Linear Interpolation (SLERP) to achieve
smooth interpolation. For very small
interpolation, he mentioned that it’s a
good idea to use simple Linear
Interpolation (LERP). Being the hard-
core game programmers that you are,
you may ask, “Why not use LERPs all
the time and avoid the expensive math
that SLERPs require?” The reason is that
unit length quaternions describe a 4D

hypersphere. If I were simply to inter-
polate between the two keyframes in a
straight line, I would be cutting across
the arc of that sphere (Figure 1a). As
you can see, in-betweens that are even-
ly spaced on the hypersphere create
nonlinear positions on the LERP-line.
Alternately, the effect of evenly spacing
out in-betweens along the LERP-line
would create an animation that would
appear to move faster as it traveled
across the middle of the interpolation
(Figure 1b). This may not always be a
bad thing, so it’s quite easy to adjust
between LERP and SLERP.

The code in Listing 1 gives me the
basis for creating my 3D interface. By
applying these routines to a three-
bone hierarchy, I get a smooth attack
from any two keyframed positions. To
implement this in OpenGL, I only
needed to modify my display routine a
little bit. The critical section is in
Listing 2, and you can see the results
in Figures 2a-c.

h t t p : / / w w w . g d m a g . c o m A P R I L 1 9 9 8 G A M E D E V E L O P E R

13

Slashing Through Real-Time

Character Animation

L ast time we left off, you were hanging out on a bridge in quaternion

space. Quaternion space is like the space between the handout desk and

the deal room at any booth of any publisher at E3. It’s a concept you can

grasp, but it’s really tough to visualize being there.

When not bending the bones of some
strange alien creature, Jeff can be found
hanging out at his studio at the beach.
See if you can smack some sense into
him by writing to jeffl@darwin3d.com.

F I G U R E 1 a . Spherical Linear

Interpolation (SLERP) between

quaternions.

F I G U R E 1 b . Linear Interpolation

(LERP) between quaternions.

Let’s Recap

L et me take a moment to recap what
I’ve covered in my past two

columns. I started by taking motion
capture data and applying it to a skeletal
system. I then created a method for con-
verting Euler angles to quaternions.
Then, by using quaternion interpola-
tion, I created smooth in-betweens for
the skeletal system. Lastly, to make
things look a bit more interesting, I
attached 3D objects to individual bones.

One remaining problem is that the
arm is created from three separate
objects — and it shows. The points at
which the different objects are con-
nected look a little rough. This prob-
lem has been plaguing real-time 3D
graphics for some time now. In fact,
many successful games live with this
and get quite good results (VIRTUA

FIGHTER, TOMB RAIDER, and JEDI KNIGHT

come to mind). However, to combat
this problem, many artists design their
characters to disguise the fact that the
bones are composed of separate
objects. This is done through clever
texturing or modeling, and explains
why so many real-time 3D characters

wear armor or tank top shirts.
If the character was created from

one single mesh, we wouldn’t have
any of the problems that separate

objects create. In a 3D graphics pack-
age such as Softimage, Alias, or 3D
Studio MAX, I could create a mesh and
animate it with the software’s skeletal

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

//

//// FFuunnccttiioonn:: SSlleerrppQQuuaatt

//// PPuurrppoossee:: SSpphheerriiccaall LLiinneeaarr IInntteerrppoollaattiioonn BBeettwweeeenn ttwwoo QQuuaatteerrnniioonnss

//// AArrgguummeennttss:: TTwwoo QQuuaatteerrnniioonnss,, bblleenndd ffaaccttoorr,, rreessuulltt qquuaatteerrnniioonn

//// SSoouurrccee:: WWaatttt aanndd WWaatttt,, AAddvvaanncceedd AAnniimmaattiioonn,, pp.. 336644

//// NNOOTTEE:: TThhiiss ffiixxeess aa bbuugg iinn tthheeiirr ccooddee

//

vvooiidd SSlleerrppQQuuaatt((ttQQuuaatteerrnniioonn **qquuaatt11,,ttQQuuaatteerrnniioonn **qquuaatt22,,ffllooaatt sslleerrpp,, ttQQuuaatteerrnniioonn **rreessuulltt))

{{

////// LLooccaall VVaarriiaabblleess //

ttQQuuaatteerrnniioonn qquuaatt11bb;;

ddoouubbllee oommeeggaa,,ccoossoomm,,ssiinnoomm,,ssccaallee00,,ssccaallee11;;

//

//// UUSSEE TTHHEE DDOOTT PPRROODDUUCCTT TTOO GGEETT TTHHEE CCOOSSIINNEE OOFF TTHHEE AANNGGLLEE BBEETTWWEEEENN TTHHEE QQUUAATTEERRNNIIOONNSS

ccoossoomm == qquuaatt11-->>xx ** qquuaatt22-->>xx ++

qquuaatt11-->>yy ** qquuaatt22-->>yy ++

qquuaatt11-->>zz ** qquuaatt22-->>zz ++

qquuaatt11-->>ww ** qquuaatt22-->>ww;;

//// MMAAKKEE SSUURREE WWEE AARREE TTRRAAVVEELLIINNGG AALLOONNGG TTHHEE SSHHOORRTTEERR PPAATTHH

iiff ((((11..00 ++ ccoossoomm)) >> DDEELLTTAA))

{{

//// IIFF TTHHEE AANNGGLLEE IISS NNOOTT TTOOOO SSMMAALLLL,, UUSSEE AA SSLLEERRPP

iiff ((((11..00 -- ccoossoomm)) >> DDEELLTTAA)) {{

oommeeggaa == aaccooss((ccoossoomm));;

ssiinnoomm == ssiinn((oommeeggaa));;

ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** oommeeggaa)) // ssiinnoomm;;

ssccaallee11 == ssiinn((sslleerrpp ** oommeeggaa)) // ssiinnoomm;;

}} eellssee {{

//// FFOORR SSMMAALLLL AANNGGLLEESS,, UUSSEE AA LLEERRPP

ssccaallee00 == 11..00 -- sslleerrpp;;

ssccaallee11 == sslleerrpp;;

}}

rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** qquuaatt22-->>xx;;

rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** qquuaatt22-->>yy;;

rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** qquuaatt22-->>zz;;

rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** qquuaatt22-->>ww;;

}} eellssee {{

//// SSIINNCCEE WWEE FFOOUUNNDD TTHHEE LLOONNGG WWAAYY AARROOUUNNDD,, UUSSEE TTHHEE SSHHOORRTTEERR RROOUUTTEE

rreessuulltt-->>xx == --qquuaatt22-->>yy;;

rreessuulltt-->>yy == qquuaatt22-->>xx;;

rreessuulltt-->>zz == --qquuaatt22-->>ww;;

rreessuulltt-->>ww == qquuaatt22-->>zz;;

ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** ((ffllooaatt))HHAALLFF__PPII));;

ssccaallee11 == ssiinn((sslleerrpp ** ((ffllooaatt))HHAALLFF__PPII));;

//// MMUULLTT BBYY TTHHEE SSCCAALLEE

rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** rreessuulltt-->>xx;;

rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** rreessuulltt-->>yy;;

rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** rreessuulltt-->>zz;;

rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** rreessuulltt-->>ww;;

}}

}}

//// SSlleerrppQQuuaatt //

L I S T I N G 1 . Interpolation of Two Quaternions.

F I G U R E S 2 a - c . Keyframe #1, 50 per-

cent interpolation, and keyframe #2.

deformation system. This would create
very seamless characters that could be
animated very quickly by a game
engine. In fact, this method has been
used by QUAKE (and its genetic off-
spring) quite successfully.

However, by predeforming the charac-
ters to animate them, I lose the key ben-
efit of real-time 3D — flexibility. By
sticking to a hierarchy of bones, I’m able
to apply unique motion capture data,
interpolate between keyframes, and
incorporate many things that I haven’t
talked about, such as real-time inverse
kinematics, dynamics, and motion
blending. So how do I achieve the key
benefits of a skeleton without having the
ugly seams that come with it?

Skin Them Bones

T he answer is to stretch a single skin
over the bones in the skeleton.

While this is a fairly advanced feature in
most 3D modeling packages, the tech-
nique behind it is really quite easy. As a
good starting point, let’s consider associ-
ating each vertex in the skin mesh with
an individual bone. The influence of
that bone directly effects its associated
vertex . Thus, when you rotate a bone, it
rotates the associated vertices about the
root position of that bone. You can see
the effect of this process in Figure 3. In
this image, two bones define the hierar-
chy, and each bone has eight vertices
associated with it. While this technique
creates a seamless, deformable mesh
with very little processor overhead, it
has one drawback. At the point where
the two bones meet, the skin is stretched
a bit. While this may be fine for many
applications, with extreme motion, this
stretch is very unrealistic.

The solution to this problem is to
add a few more vertices to the model
and “weight” the individual vertices.

This means that for each vertex in the
model, you assign a certain percentage
of its influence to each bone. While
many vertices may be assigned 100 per-
cent to an individual bone, some may
be assigned 50/50 between two bones.
By blending the influence of different
bones, you can achieve a very smooth
skin. In some extreme cases, you may
even need to weight a vertex between
three or more bones, but in general,
two is sufficient.

Figure 4 shows how a fully weighted
mesh could be applied to the same two-
bone system. Because of the
calculations needed to han-
dle the weighting, this sys-
tem is a bit more processor
intensive then basic skin-
ning. However, for a main
character or opponent, the
smooth results and flexibility
are worth the increased
processor load.

The remaining question is,
How do I implement a fully
weighted mesh applied to a
hierarchical skeleton in an
immediate mode API such as
OpenGL? Well, that’s going
to be the topic for next time.
However, some of you may be
itching to get started. Since I
have now covered all of the
main pieces, for your home-
work, see if you can figure
out an efficient way to calcu-
late those vertex positions,
and I will work it out next
month. Try to wrap your
brain around the underlying
concept, and then we’ll work
out the details together next
month.

The sample application for
this month (on the Game
Developer website at
www.gdmag.com) allows you

to keyframe two positions for a three-
bone arm and interpolate smoothly
between them. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R A P R I L 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 3 . Two bones weighted 100 percent to

each vertex.

F I G U R E 4 . Two bones weighted to each vertex

100-66/33-50/50-33/66-100.

// CONVERT THE TWO KEYFRAME ROTATIONS TO QUATERNIONS

EulerToQuaternion(&curBone->p_rot,&primaryQuat);

EulerToQuaternion(&curBone->s_rot,&secondaryQuat);

// INTERPOLATE BETWEEN THEM BY A BLEND FACTOR 0.0 - 1.0

SlerpQuat(&primaryQuat,&secondaryQuat,m_AnimBlend,&curBone->quat);

// QUATERNION HAS TO BE CONVERTED TO AN AXIS/ANGLE REPRESENTATION

QuatToAxisAngle(&curBone->quat,&axisAngle);

// DO THE ROTATION

glRotatef(axisAngle.w, axisAngle.x, axisAngle.y, axisAngle.z);

L I S T I N G 2 . Applying quaternion rotation in OpenGL.

For my quaternion SLERP code, I have

used Advanced Animation and

Rendering Techniques,(ACM Press,

1992) by Watt and Watt as a starting

point. This is a very good book that cov-

ers many topics not touched by any

other text. However, as I’ve tried differ-

ent concepts in the book, I have found a

few errors. The code sample on interpo-

lating quaternions is a case in point.

When negating an input quaternion to

find the shortest arc, they negate the

wrong one. The source that accompa-

nies this article corrects that error.

Problems such as these are a good rea-

son to study the underlying concepts

and follow sources for any new tech-

nique. This can save you a great deal of

frustration when things do not work out

as they should.

RR EE FF EE RR EE NN CC EE SS

	back:

