
b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

architectural scenes. Raytracing and
radiosity renderings often fool me into
believing I am seeing actual photo-
graphs. Even in the real-time game
market, techniques such as multi-pass
rendering and precomputed lighting
have enabled game players to run
around in a world complete with reflec-
tions, shadows, dynamic lights, and an
impressive amount of texture detail.

As I write this, QUAKE 3: ARENA has
been unleashed upon the world. This
impressive game takes real-time render-
ing technology to a new high. Once
again, the graphics capabilities of this
game {Do you mean as each of id’s
games has done before it? } stretch
real-time rendering to its limit, bringing
even the latest “graphics processing
units” to their knees. QUAKE 3 also
marks the industry debut of program-
mable “shaders,” which are used for
describing the look of a real-time ren-
dered image. 

A shader is a form of programming
language that describes the look of a
particular surface in a rendered world.
In its most abstract sense, it is a func-
tion that is given a series of properties
and then returns the color of the light
leaving any position on the shaded sur-
face. Normally, the properties given to
a shader include such things as the
lights in the scene, the color of the sur-
face, and some measure of the rough-
ness of the surface.

Game programmers and artists don’t
normally think of the rendered world

in these terms. However, even the most
basic 3D rendered scene can be
described in these {the preceding or
the following terms?} terms. A texture
map that is applied to a 3D polygon
simply describes the color of the light
that leaves that polygon at any point
on its surface. Likewise, the Gouraud
shading model is a series of parameters
that controls the interaction of the
lights in the scene with the color and
roughness of the polygon surface. The
power of a shader language, however,
goes way beyond what we have tradi-
tionally done with real-time 3D render-
ing. Since a shader describes the color
leaving the surface of polygon, it can
be used to generate a complex pattern
of colors without texture maps. 

Most of you are familiar with proce-
dural textures. This is where a texture
map is created by some form of mathe-
matical formula instead of being drawn
in an art package. Procedural textures
are commonly used for patterns such
as noise (like TV “snow”), lava, water,
marble, or fire. UNREAL implemented
procedural texture techniques for sev-
eral effects used throughout its envi-
ronments. This allowed the designers
to have a nearly unlimited variety of
certain types of textures without hav-
ing to store all those bitmaps on the
game CD. However, the textures still
needed to be generated in order to load
them onto the 3D card for rendering.

Wouldn’t it be nice if those textures
never had to be generated at all? What

if I could simply upload a small pro-
gram that handled all my procedural
textures? Then all I would need to pro-
vide to the rendering hardware would
be a few variable settings for each dif-
ferent material. Sounds kind of futuris-
tic, right?

It is not as far out as you think. Shad-
ing languages have been around for
quite a while. The first, and still most
commonly used, is Renderman. First
described in the late 1980s, this render-
ing language has been used to create
some of the most memorable computer
graphics scenes of all time, including
the recent movie Toy Story 2. While it
may seem that we are a long way from
creating scenes this complex for real-
time games, you may be surprised.

Listing 1 describes a Renderman shad-
er that creates a checkerboard pattern
on a surface. The shader takes three float
variables and two colors and creates a
checkerboard of any size and frequency.
This is done without any texture map.
For a checkerboard, this may not seem
very impressive; however, it’s the idea of
controlling the look of an individual
pixel on an individual surface that
makes Renderman so powerful. A shader
doesn’t need to be as simple as a
checkerboard. Shaders can be used to
create all kinds of surfaces, everything
from highly-detailed wood, marble, and
fire to even a moldy cue ball (my
favorite Renderman shader). 

A closer examination of the checker-
board shader reveals that the only other
thing the shader really needs to know
about is the position of the view and
the lights in the scene. Interestingly,
the new generation of 3D graphics
hardware such as Nvidia’s GeForce 256

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y  2 0 0 0 G A M E  D E V E L O P E R

1

Under the Shade of the 

Rendering Tree

T he goal of computer graphics has always been to create increasingly realis-

tic images. Faster processors and more sophisticated rendering techniques

have allowed computer artists to create scenes that come very close to sim-

ulating reality. In particular, computer graphics are good at rendering 

When not ditching work to catch the latest animated feature film, Jeff can be found
at Darwin 3D trying to convince clients that things can’t look any better. Tell him
how wrong he is at jeffl@darwin3d.com.



keeps these positions in hardware
already. I can’t help but think that the
hardware manufacturers are thinking of
the implications in the same way that I
am. I don’t know how long it will take,
but I am going to dust off my Render-
man Companion and start thinking
about how to integrate programmable
shaders into my art production path-
ways. Since I can’t really see envision
many artists learning to program Ren-
derman, I think there are going to be a
lot of tools that will need to be created.
However, until I get my ultimate shader
language written, I am stuck with the
traditional texturing and lighting meth-
ods to get the results I want.

Welcome to Toon Town

Ihave lamented before in this column
that creating 3D characters is very

difficult. I can take some comfort from
the fact that even Pixar, with its terrific
Renderman shading system and all the
money and talent possible, has trouble
getting human characters right. They
have hit upon one of the great ironies
of computer graphics. When rendering
3D environments, the technology has
enabled increasingly realistic final
images. With each advance in model-
ing or lighting, the images take a step
closer to what we see around us in the
real world.

With human characters, on the other
hand, the story is entirely different. In
my experience, as a 3D computer-gener-
ated human is rendered in an increas-
ingly realistic manner, it paradoxically
looks increasingly strange to viewers.
They can’t really say why it looks odd,
just that it’s not quite right. This is espe-
cially noticeable when the texture maps
for the character faces are created from
photographs of real people.

Particularly frustrating is the fact that
people are able to look at a stick figure
performing an animation and appreci-
ate the lifelike motion. However, when
that same motion is applied to a syn-
thetic 3D character, those same people

get hung up on the look of the
character. They no longer
regard the motion of the char-
acter as realistic simply
because it looks “odd.” If the
character is a monster or some-
thing else nonhuman, this
problem seems to go away.
Well, that’s great if you’re cre-
ating a shooter filled with
mutated zombies and uncon-
trollable robots. However, if
you’re creating a realistic scene
filled with average people,
you’re in trouble.

This observation has led me
to think that for now, at least,
the focus for real-time 3D
characters should not be on
trying to achieve realism. In-
stead, we should be looking at
approaches to creating stylized
characters. Perhaps Disney had
the right idea. For years, its
artists have seemed to under-
stand and appreciate this para-
dox. They were able to create
very realistically painted back-
grounds full of color and
depth. For the actual charac-
ters, though, they still rely on
simple pen-and-ink drawings.
Even when the first fully CG
character was introduced in a
Disney animated feature, the
magic carpet in Aladdin, it was
rendered in a style that
matched the traditional meth-
ods. With this in mind, is it at
all surprising that 3D animat-
ed series such as Mainframe
Entertainment’s ReBoot and
Beast Wars focus on robotic
and animal characters?

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R F E B R U A R Y  2 0 0 0 h t t p : / / w w w . g d m a g . c o m

2
//

// Shader: Checkerboard Shader

// Arguments:Diffuse and Ambient Coefficient

// Number of squares

// Two colors to alternate

//

surface checkerBoard(

float Kd, Ka; //  Specular and Ambient Lighting 

float frequency; //  Number of Squares

color c1, c2 // Two colors

)

{

// S and T vary from 0 - 1 across the surface

float smod = mod(s*frequency,1); // Interval in S direction

float tmod = mod(t*frequency,1); // Interval in T direction

// Ci is the output color

if (smod < 0.5) { // Odd Columns

if (tmod < 0.5)

Ci = C1; // C1 Square

else

Ci = C2; // C2 Square

} else { // Even Columns

if (tmod < 0.5)

Ci = C2; // C2 Square

else

Ci = C1; // C1 Square

}

Oi = Os; // Opacity out = opacity in

// ambient() returns ambient light value

// diffuse(N, I) returns the sum of lights from

// incident vector I and surface normal N

Ci = Oi * Ci * (

Ka * ambient() +

Kd * diffuse(faceforward(N,I)) );

// Ci is final color

}

L I S T I N G  1 .  A Renderman checkerboard.



Losing a D

Perhaps it is time to look at using 3D technology to create
much more stylized animations instead of realistic ones.

This technique, called non-photorealistic rendering (NPR) in
academic circles, has emerged as a strong research field at
industry conferences such as Siggraph. That means there are
plenty of fresh, steaming piles of research to get me started.

The character in Figure 1 was created using textures creat-
ed from photographs and scans. I wanted to get something
much more stylized, so we had another model and set of
textures created with a cartoon kind of look in mind. You
can see the results in Figure 2. This character is much more
typical of the kinds of characters you may see in a 3D game.
However, it doesn’t quite capture the 2D look I had in mind.

For one thing, the shading implies too much depth. The
maps really need to be reduced to only a few colors. This is
no problem to do in any image processing program as you
can see in Figure 3. This is much closer to the idea of a car-
toon rendering. However, the image is clearly missing the
bold outlines that characterize cartoon images. To create
those lines, I need to turn to some technology.

GL to the Rescue

T he first lines that I need to create are the silhouette lines.
These lines define the outline of the character. On a 3D

model, the outline of a model is defined by the model’s edges.
Intuitively, I know that a silhouette edge must occur when an
edge connects a polygon facing forward and a polygon facing
backward. This can be expressed mathematically as:

where Ni are the two face normals for the adjacent polygons,
V is a vertex on the edge, and E is the eye point. When this
statement is true, the edge is part of the silhouette.

As you can imagine, this would be a rather time-consum-
ing process on a model that had any significant number of

faces, but this method has the benefit of identifying the
actual edges that define the silhouette. This could be useful
if I wanted to apply some other effects to the silhouette
lines. But for now, I want to look for a faster way that makes
use of my existing 3D hardware.

I can start by drawing the front-facing polygons with tex-
ture. I can then draw the back-facing polygons in line mode.
Since the Z-buffer is already filled for front-facing pixels, the
only pixels drawn will be those pixels along the edge. How-
ever, in order for this to work, I need to set the depth test so
it draws pixels that are at the same depth as those in the Z-
buffer. In OpenGL, this setting is glDepthFunc(GL_LEQUAL). This
gives me a rendering algorithm like this:

1. Draw front facing textured polygons
2. Set depth test to LEQUAL
3. Draw back facing lines.

Or in OpenGL:
glPolygonMode(GL_FRONT,GL_FILL); // Draw Filled Polygons

glDepthFunc(GL_LESS); // Don’t draw shared edges

glCullFace(GL_BACK); // Draw front facing polygons only

DrawModel(); // Call my draw routine

glPolygonMode(GL_BACK,GL_LINE); // Draw Lines

glDepthFunc(GL_LEQUAL); // Draw shared edges

glCullFace(GL_FRONT); // Draw back facing edges only

DrawModel(); // Call my draw routine

You can see the result in Figure 4. The first frame shows just
the resulting silhouette lines and the second frame shows
the combined image.

With this technique, I can use OpenGL to enhance the
effect. I can make the lines thicker or even anti-alias the lines
with alpha blending (or even anti-aliased hardware lines, if
available). It is even possible to make the lines pop out off the

N V E N V E1 2 0• −( )( ) • −( )( ) ≤

h t t p : / / w w w . g d m a g . c o m F E B R U A R Y  2 0 0 0 G A M E  D E V E L O P E R

3
F I G U R E  1 .  Our original character, outfitted with textures
created from photographic scans.

F I G U R E  2 .  A more styl-
ized, cartoonish version of
the character. 

F I G U R E  3 .  Reducing the
depth of colors gives a
more 2D look. 



model using
glPolygonOffset(). Howev-
er, this can lead to a
mess, so you need to be
careful.

Another approach
that may make cleaner
lines requires the use of
an extra pass and the
stencil buffer. In this
technique, the algo-
rithm is:

1. Draw front facing
textured polygons

2. Set draw mode to
stencil only

3. Draw front facing
edges in line mode

4. Draw back facing
lines where stencil
is set.

This will ensure that
only edges that are
shared front and back
are drawn. However,
since the stencil buffer
is not commonly available across con-
sumer hardware, it may be wise simply
to test for it and use it when possible.

In addition to the silhouette lines, I
probably want to add interior lines that
define changes in the material of the
character. This cannot really be done
easily with just rendering tricks. This
requires a pass through the object to
detect edges that share polygons with
different materials. These edges are
marked as material boundaries and are
drawn after the render. Luckily, the
material edges are not viewer-depen-
dent so they can be calculated only
once as a preprocess.

Some Shadier Business

Now that I have a nice method for
creating cartoon-style characters

with silhouette lines, I need to think
about shading. Applying typical
Gouraud shading to these characters
would ruin the effect I am trying to
achieve. I need to change the lighting
model to make this work.

In the Gouraud shading system, the
angles between the viewer, light, and
surface normal are used to determine
the shade of the vertex. For my simple
cartoon rendering, I only want two
shades for each material, light and
dark. In order to do this, I need to cal-
culate the vertex colors myself. The for-
mula I applied is:

where NV is the vertex normal, V is the
vertex position, E is the eye point, and
ε is the shading threshold. This is very
similar to the silhouette-detection for-
mula. However, in this case, when the
result of the formula is less than a cer-

tain threshold, ε, the vertex is shaded
with the “dark” color. Otherwise, the
standard color is used. The ε value can
be changed to allow for more or less
shading on the character. You can see
the results of this shading in Figure 5.

The Squashy and Stretchy Show

Ithink these techniques provide a
new way of thinking about real-time

3D animation. It’s a classic example of
embracing your limitations. There is
lots of room for experimentation and
exploration. Creating the ideal texture
to work with non-photorealistic render-
ing will require some creativity on the
part of artists. Some experimentation
with brush patterns and other artistic
styles might be interesting as well.

Another intriguing idea would be to
apply some of the soft-body deforma-
tion techniques that I described in my
March 1999 column to the models
(“Collision Response: Bouncy, Trouncy,
Fun”). These new squishy objects can
be rendered using NPR techniques to
get a real Road Runner feel. For this
month, play around with the simple
cell shader and begin exploring the
world of the less-than-realistic. Grab
the source code and the application
from the Game Developer web site at
http://www.gdmag.com.  ■

N V EV • −( )( ) < ε

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R F E B R U A R Y  2 0 0 0 h t t p : / / w w w . g d m a g . c o m

4

Siggraph 1999 had an entire course on
Non-Photorealistic Rendering. If you are
interested in the topic you should defi-
nitely get the notes or the courses CD:
“Non-Photorealistic Rendering,” Course
17 (Siggraph 1999, ACM Siggraph).

• Markosian, Lee, and others. “Real-
Time Non-Photorealistic Rendering,”
Proceedings of Siggraph 97. New
York: ACM Siggraph, pp. 415–420.

• Uphill, Steve. The Renderman Com-
panion. New York: Addison Wesley,
1990.

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO

F I G U R E  4 .  To complete the cartoon look of the charac-
ter, black outlines were added with OpenGL. 

F I G U R E  5 .  Finally, shading is added
with our lighting model. 

Thanks to Lisa Washburn at Vector
Graphics (http://www.vectorg.com) and
Tom Knight at Imagination Works (http://
www.imagination-works.com) for the
models and textures used in this article.

Acknowledgements


