

Acclaim Advanced Technologies Group Internal Technical Memo #39

Copyright Acclaim Entertainment, Inc 1994

Acclaim Skeleton File Definition

M. Schafer May 94

	This file format defines a skeleton in terms of its shape, hierachy, and the

properties of its joints and bones. It is intended as a human readable exchange format between

different skeletal animation systems based on joint rotation data. Although it is also well

suited for positional data only systems. This is the format used by the Acclaim Motion Capture

System. Due to the rotational basis of Acclaim's motion capture data, motion data files are

matched to specific skeletons. They will not work as expected on arbitrary skeletons.

Therefore this definition is necessary to ensure that motion data files will work as expected.

	This file does not define how the skeleton affects the skin. That information is

vendor specific. It is recomended that Vendors are able to convert their skeletal system data

structures to and from this format. Vendors may adopt this format as their own. Please address

all requests for additional fields, changes or queries to Acclaim ATG.

Notes:

	Reset the skeleton to its base position every frame.

	Limits should not clip incoming MC data which may exceed them.

	DOF and limit pairs are optional. If no dof then no motion allowed.

Acclaim ATG (516)624-8888. 71 Audrey Ave. Oyster Bay. NY 11771.

The File format: (text)

comment, ignore text to end of line

, commas and () parenthesis are used as whitespace.

:version 1.10			# float		(version of this file format)

:name xxxxxxxxxxxxxxxxxxxx	# string[50]	(name of skeleton)

:units				#		(optional. unit definitions follow)

 mass 1.0			# float (multipliers for different unit systems)

 length 1.0			# float		(eg. 2.54 = data in cm, local units in inches)

 angle rad			# token (rad or deg - degrees are default)

:documentation			#		(documentation follows)

 Place any notes here.

 Documentation is read until the next line that starts with a keyword.

:root

 axis XYZ			# token		(rot. order for orientation offset)

 order TX TY TZ RZ RY RX	# tokens	(order of transformations for root)

 position 0.0 0.0 0.0		# float x3	(translation data for root node.)

						(To position the skeleton)

 orientation 0.0 0.0 0.0	# float x3	(rotation data. To orient the skeleton)

:bonedata			#		(defintion data for all the bones)

 begin				# (delimeter)

 id 1			# int		(opt. numeric id. can be used inplace

						(of name for reference)

 name h_waist		# string	(uses the body naming convention)

 direction 0.0 1.0 0.0	# float x3	(direction vector of bone)

 length 3.0			# float		(length of bone)

 axis 0.0 1.0 0.0 zyx	# float x3 xyz (the global orientation of the axis, the xyz

						(tokens specify this order of rotation)

 bodymass 10.0		# float		(opt. mass of skinbody assoc with this bone)

 cofmass 1.0			# float		(opt. position of cofm along bone)

 dof tx ty tz rx ry rz l	# tokens	(only tokens that are needed for this bone

				#		(l stands for stretch along direction of bone)

 limits (-inf,inf)		# float/token (lower and upper limit for each degree of

 (-inf,inf)				(freedom given above. inf = infinity.)

 (-inf,inf)

 (-3.14, 3.14)

 (0.0, 3.14)

 (-1.0, 3.14)

 (0.5, 4.5)

 end

 begin				# the next bone ...

 name h_R_hip

 direction 0.0 1.0 0.0

 length 2.5

 axis 0.0 1.0 0.0 zxy

 dof rx l

 limits (-1.0 1.0)

 (2.5 4.0)		# i.e. can't get any shorter.

 end

 "				# etc until all bones specified.

 "

:hierachy

 begin

 root h_waist h_R-hip h_L_hip # parents followed by children

 h_waist h_torso_2		 # the root is implied as the first element although it is not

 " "			 # a bone but a location.

 " "			 # etc until all hierachy defined.

 end

:skin "filename"		# filename of skin to use on this skeleton

 "filename"		# a second skin. E.g. block figure, med res and high res

	" "			# skins.

Notes:

	Version, name, units, documentation appear before bonedata.

	Bonedata appears before hierachy.

	In bonedata: id or name must appear before any other data.

		 limits must appear after dof.

	Root defines the base position and orientation of the entire skeleton.

	When reading the hierarchy the first child of a parent is the primary route thru the

	 skeleton. The root is implied as the first parent although it is really a node.

	Dof specification allows for xyz translation and rotation as well as movement along

	 the bone ("l"). This movement is translation not scaling data. The root of the

	 skeleton will have xyz translation and rotation dof in order to position and orient

	 the skeleton in global space. If a skeleton is designed to work with positional data

	 only then only the xyz translation dof's will be specified. The vendors system will

	 then have to offer Inverse Kinematic support to solve the rotational issues.

	Skins are defined in order to provide a link between a skeleton and the skins it is

	 able to manipulate. The method of manipulation would be defined using another

	 mechanism and is vendor specific.

	There are several elements of the file which are desined to make the file more human

	 readable. For example the bones orientation is in global space although the skeleton

	 is hierachical. The internal representation of the skeleton can follow whichever

	 system the vendor desires.

	Note that independent rotation order can be simulated by having three zero length

	 bones at the same location. However this same system will confuse users if they are

	 trying to layer Inverse kinematic data over motion captured data. Correct

	 implementation of independent ordering for motion captured data is beneficial.

	Version 1.10 allows for mass in bone calculations. This is optional.

	Systems which do not implement dof limits may ignore them. If they do they should use

	 reasonable defaults in their files.

	Before vendors add any new elements to the file definition please contact

	Acclaim ATG.

Bone Naming Conventions:

	This section details the naming conventions used by the Acclaim process. Individual

vendors can choose to use this system if they wish. If not then vendors should be aware that

bone names can get quite long and should allow for this in their systems.

	The naming convention is necessary for two reasons, neither of which may concern a

given vendor:

	- To easily identify a given bone by its name.

	- To enable automatic mapping of motion data to arbitrary skeletons using Acclaim

	 drivers or vendor specific drivers.

Naming:

	There are two conventions the second is a short form. They can be mixed.

	Bone names are case insensitive but should be lowercase.

	Bone names have no spaces in them.

	The Class is optional. If not included it defaults to h.

	Words in names are separated with underscores.

	Bone names must include Bone qualifiers. All other words are optional.

	Bone names ending with underscore number (_1) indicate that there are multiple

	 segments which motion is divided across. (I.e. h_torso_1)

	In the case of multiple limbs or digits, use a segment number, spelled out.

	 (I.e. L_finger_one)

	If there are multiple bones in a segment that require individual motion data then use

	 a position indicator. (I.e. L_up_finger_one)

	Syntax:

		class_side_position_bone_segment_division

	Class:

		h	- Human class of naming.

	Side:

		left	(L)	- Bones on left side.

		right	(R)	- Bones on right side.

	Position:

		up	(u)	- Bones that are closest to torso or oldest ancestor.

		mid	(m)	- Middle bones.

		low	(l)	- Bones that are furthest from torso.

	Bone:

		root			not a bone at all but the root node of the skeleton.

		basebone	(base)	possible extra bone to align skeleton axes with global

		head

		neck

		shoulder	(shld)

		torso		(trs)

		waist		(wst)

		hip

		leg

		foot

		toe

		toes			use when modelling all toes together.

		arm

		hand

		finger		(f)

		fingers		(fngs)	use when modelling all fingers together.

	Segment:

		dummy			use if this bone is only used to position the next

					 one.

		one		(on)	use when dealing with multiple segements of the same

		two		(tw)	 type. If numbering toes,fingers

		three		(th)	 (finger_one = thumb, toe_one = big toe)

		 "		 "

	Division:

		1			A number at the end of a bone name indicates that a

		2			 set of angles will be divided amongst the bones.

		3			 (E.g. the torso or neck)

		4			 Start numbering with the oldest ancestor.

		"

	Examples:

		h_waist

		h_torso_1		torso closest to waist

		h_torso_2		rotational data is spread across these bones

		h_left-up-arm		left upper arm

		h_L_fingers		all left fingers

		h_L_finger_one		thumb

		h_left_up_finger_one	segment of thumb closest to hand.

		L_l_toe_th		last bone on the third toe on left foot. (One with the

					 nail) (fully contracted name)

Example:

	- human skeleton showing hierachical nature and naming. (no individual fingers)

	root					Root node of skeleton

	 h_waist				first joint in back

	 h_torso_1				These torsos divide one value evenly amongst

	 h_torso_2				 them all.

	 h_torso_3

		 h_torso_4

		 h_torso_5

		 h_left_shoulder		the shoulders branch off here.

		 h_left_up_arm

			 h_left_low_arm

			 h_left_hand

			 h_left_fingers

		 h_right_shoulder

		 h_right_up_arm

			 h_right_low_arm

			 h_right_hand

			 h_right_fingers

		 h_neck_1			the neck has its rotations broken over two

		 h_neck_2			 bones

			 h_head

	 h_left_hip

	 h_left_up_leg

	 h_left_low_leg

		h_left_foot

		 h_left_toes

	 h_right_hip

	 h_right_up_leg

	 h_right_low_leg

		h_right_foot

		 h_right_toes

	 h_tail				for humans in the News of the World.

